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Abstract

It has long been recognized that the cohesion of composite materials, in low confinement, is strongly affected by the
properties of the interfacial transition zone (ITZ) between inclusions and matrix. While the effect of the ITZ on the elas-
ticity properties of composites has been studied by many authors in the context of linear homogenization methods, the
upscaling of the cohesion strength of highly filled composite materials has not been addressed. This is the focus of the
non-linear homogenization procedure developed in this paper, which is based on the separation of the heterogeneous
material system in phases of constant strength properties, a non-linear elastic representation of the limit stress state in
each phase, and the definition of appropriate effective strain quantities that capture the morphological features of the
microstructure. Applied to a three phase composite model composed of rigid inclusion, interface zone and matrix, the
model provides a quantitative means of studying the effect of the interface cohesion and the interface volume fraction
on the composite cohesion. In particular, we identify a critical interface-to-matrix cohesion ratio, below which the com-
posite cohesion is smaller than the one of the matrix. Furthermore, the model lends itself readily to the study of the
degradation of the interfacial properties in composite materials. This is shown for non-degraded and chemically sof-
tened cement-based materials, for which we provide conclusive evidence (1) that the interface strength properties of
mortar are far more affected by chemical degradation than the one of the cement paste matrix; and (2) that chemical
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degradation does affect the mechanical strength performance of the cement paste not only through a change of volume
proportions (i.e. increase of porosity), but as well through a pure chemical softening of the solid�s cohesion.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is common practice, in mechanics of materials, to characterize the low confinement tensile–compres-
sive strength domain of isotropic composite materials by means of two material properties: the friction
coefficient d and the cohesion c. These material properties are conveniently determined from the uniaxial
compressive strength f 0

c and the uniaxial tensile strength f 0
t of the material, and the use of a cohesive-fric-

tional strength criterion. For instance, using a Drucker–Prager criterion, d and c are obtained by means of
interpolation of the two uniaxial strength values in the

ffiffiffiffiffi
J 2

p
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An open question is how the macroscopic material properties of the composite material relate to the prop-
erties of its microscopic constituents, that is matrix, inclusions and interfaces. For purpose of illustration,
Table 1 summarizes some results of a recent test campaign on cement-based composite materials. The mate-
rials used in this test campaign are a cement paste, i.e. the matrix of cement-based composites, and a mortar
prepared at a water-cement ratio w/c = 0.5, using a Type I Portland cement. The mortar contains narrowly
graded Nevada sand with d60 = 0.23mm and d30 = 0.17mm (da = b mm means that a,% of the sand grains
have a diameter less than b mm) at a water-cement-sand ratio of w/c/s = 1/2/4. This corresponds to a sand
volume fraction of roughly fI = 0.5.A part of the material specimens were chemically softened by means of
calcium leaching in a highly concentrated ammonium nitrate solution, generating a new material, described
in details in Heukamp et al. (2001a,b). The leaching process leads to a dissolution of Portlandite minerals
Ca(OH)2 that account for about 20% of the solid volume of a cement paste. In addition, the Calcium-
Silicate-Hydrates are partially decalcified. As equilibrium is reached, a strong increase in porosity has taken
1
red tensile and compressive strength of a cement paste and a mortar, together with determined Drucker–Prager strength
eters, friction coefficient d and cohesion c, and macroporosity

Paste (matrix) Mortar (composite)

Initial Degraded Initial Degraded

e strength f 0
t [MPa] 1.87 0.87 3.48 0.94

ressive strength f 0
c [MPa] 54.1 3.2 36.6 3.0

n coefficient d [1] 1.62 0.99 1.43 0.91
ion c [MPa] 2.09 0.79 3.67 0.83
porosity [1/100] 1.0 21.0 1.5 10.5

hat the macroporosity is not the total porosity of the material but the porosity considered as a phase of the matrix in the sense of
uum micromechanics. This corresponds to the micrometer-range porosity of cement-based materials.
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place, along with a substantial reduction in stiffness and strength of the remaining solid. It is interesting to
note, from Table 1, the difference of the effect of inclusions on the tensile strength and the compressive
strength. For the intact material, rigid sand inclusions clearly enhance the matrix tensile strength
(f 0
t ¼ 1:87! 3:48 MPa), while they substantially reduce the compressive strength (f 0

c ¼ 54:1! 36:6
MPa). Similar trends are found for the chemically softened material, albeit less pronounced
(f 0
t ¼ 0:87! 0:94 MPa; f 0

c ¼ 3:2! 3:0 MPa). While the composite strength enhancement in tension can
be explained by crack arresting and crack kinking at inclusions of the governing fracture process in the ma-
trix, that ultimately translate into a higher tensile strength of the composite (mortar) than the pure matrix
strength (cement paste), the lower compressive strength of the composite implies that there are other mech-
anisms and material constituents at work. It has long been argued, for cement-based materials, that this
particular behavior in low confinement was due to the ‘‘Interfacial Transition Zone’’ (ITZ), that is the inter-
face between inclusion and matrix. Fig. 1 displays a typical SEM micrograph of the ITZ of a calcium de-
pleted mortar, showing clearly the changing properties of the material in the ITZ away from the
inclusion(aggregate). In general, this zone is characterized by an increased porosity and a different material
composition (higher concentration of Ca(OH)2, and non-hydrated cement particles) compared with the
remaining matrix, reducing generally the composite compressive strength.
Fig. 2 displays the results in the

ffiffiffiffiffi
J 2

p
� RM stress invariant halfplane, from which the Drucker–Prager

strength parameters, d and c, are extracted. In low confinement that characterizes the tensile–compressive
strength capacity, the different effect of inclusion on the tensile vs. compressive strength translates into a
reduction of the friction coefficient d and an increase of the composite cohesion chom (see Table 1). By con-
trast, in high confinement, the trends are inverted: the presence of inclusions leads to a frictional enhance-
ment due to an increased local confinement, hence de-activating the ITZ. This phenomenon has been
studied in details for cement-based materials both experimentally (Ulm et al., 2002; Heukamp et al.,
2001b) and theoretically (Lemarchand et al., 2002); but goes beyond the scope of this paper that focusses
on the low-confinement strength domain of highly filled composite materials, in which the interfacial prop-
erties significantly affect the cohesion.
More precisely, due to material processing, an interface zone around the inclusion almost invariably

exists that can have different properties than the matrix material. The size of this zone can vary; but it is
usually on the order of the characteristic microstructural size of the matrix material. The effects of the
Fig. 1. SEM micrograph of the interfacial transition zone (ITZ) of a calcium depleted mortar, with sand inclusion (left) and matrix
(right).



Fig. 2. Low confinement strength domain in the
ffiffiffiffiffi
J 2

p
� RM -halfplane (normalized by the cement paste cohesion): CP-0 = undegraded

cement paste (matrix); M-0 = undegraded mortar (composite); CP-oo=degraded cement paste; M-oo = degraded mortar.
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ITZ on the elastic properties of composite materials have been addressed by many authors. For cement-
based composites (Ramesh et al., 1996; Lutz and Zimmerman, 1996; Lutz et al., 1997; Li et al., 1999)
and more recently Hashin and Monteiro (2002) proposed different linear upscaling schemes to calculate
analytically the composite elastic properties and to determine the ITZ properties by inverse analysis.
Garboczi and Berryman (2001) employed numerical techniques to predict the composite elastic properties
for random microstructures with interfaces. However, the effect of the ITZ on the strength properties of the
composite is harder to determine. One reason is that the mechanical properties of the ITZ are difficult to
assess experimentally. The rare microhardness measurements reported by different authors show values be-
tween 25% and 40% of the bulk paste but vary strongly in the absolute values (Mehta and Monteiro, 1988;
Yuji, 1988), and do not provide conclusive evidence of the governing parameters of the interface that
ultimately affect the macroscopic strength. The aim of this paper is to quantify the effects of interfacial
properties on the macroscopic cohesion of highly filled composite materials. This will be achieved by means
of a non-linear micromechanics approach, which follows the one originally proposed by Ponte Castaneda
(1991) and by Suquet (1997), and which has already been employed for the study of the frictional enhance-
ment of highly filled composite materials in high confinement (Lemarchand et al., 2002). While developed
around the topic of cement-based composites, the approach is sufficiently general to be extended to other
particle composite materials, for which similar behavior have been found: filled epoxy resin (Ishai and
Bodner, 1970), cemented soils (Consoli and Prietto, 1998; Ismael and Mollah, 1998), frozen sand
(Re, 2000), metal-ceramic composites (Suresh and Mortensen, 1998), etc.
2. Elements of non-linear continuum micromechanics

Cement-based materials are composite materials that are characterized by a heterogeneous microstruc-
ture at different length scales. These range from nanometer, the characteristic length scale of Calcium-Sil-
icate-Hydrate sheets (C-S-H), to decimeters, the largest aggregate size in concretes. Continuum
Micromechanics offers a framework to address the relation between multiscale material heterogeneity
and macroscopic material behavior. The guiding-principle of continuum micromechanics is a separation
of the heterogeneous material into phases with constant material properties, leading to an estimation of
the combined properties. A micromechanical analysis can be divided into three steps (see e.g. Zaoui,
2002):
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(1) Representation, which is the physical description of the considered material system. It includes the
identification of the representative element volume (r.e.v) and the phases therein. It has to obey
the separability-of-scale-condition, which requires that the characteristic length scale of the r.e.v.,
say l, must be much smaller than the characteristic scale of the considered macroscopic structure,
L, and much greater than the scale of the heterogeneities, d. The representation includes the geometry
and morphology of the phases and their material properties (i.e. elastic properties or strength
properties).

(2) Localization, which provides the link between the macroscopic constant strain (or stress state),
prescribed on the boundary oV of the r.e.v., and the strain (or stress) in each individual phase.

(3) Homogenization, which is based on an averaging process, leads to the macroscopic properties of the
r.e.v. They are a function of the properties of the microscopic phases.

In the following, these three steps are applied to estimate the effect of the ITZ on the cohesion of highly
filled composite materials.
2.1. Geometrical and mechanical representations

The composite material system we consider is a set of three layered inclusions embedded in an infinite
medium with homogenized properties. The three inclusions are the rigid inclusion, the ITZ, and the matrix.
Fig. 3 gives a schematic representation of the r.e.v. V. Among others, Ramesh et al. (1996) employed this
geometry for the homogenization of the elastic properties of cement-based composites. It is indeed a special
case of the n-layered inclusion model for which Hervé and Zaoui provided the elastic solution under
deviatoric and volumetric loading at infinity (Hervé and Zaoui, 1993).
The different spheres are characterized by their radius, Rh (h 2 [1, 3], 1 = Inclusion (I), 2 = ITZ (i),

3 = matrix (m)); and the volume fractions of the different phases are given by (R0 = 0):
Fig. 3. Geometrical representation of the micromechanical model.
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fh ¼
R3h � R3h�1

R33
;
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R3
¼

ffiffiffiffiffiffiffiffiffiffiffiXh

i¼1
fi

3

vuut ; h 2 ½1; 3
 ð3Þ
where the reference volume is V ¼ 4
3
pR33. The volume of each individual phase is designated by Vh. The

three phases are considered to be homogeneous, and perfect bonding between the phases is assumed.
In addition to the geometrical representation, the strength properties in each phase are described by a

microscopic strength criterion of the Drucker–Prager type (see Fig. 2):
in V h : f ðrhÞ ¼
ffiffiffi
1

2

r
sh þ dhr

h
M � ch 6 0 ð4Þ
where ch is the microscopic cohesion and dh is the microscopic; sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
sh : sh

q
is the 2nd deviator stress invar-

iant of the microscopic stress tensor rh ¼ sh þ rh
Md; and rh

M ¼ 1
3
trrh is the microscopic mean stress (1st stress

invariant). The stress invariants can be linked to the strains by admitting, for monotonic loading, a non-
linear elastic representation of the �real� behavior of the phases up to failure:
sh ¼ 2lhð�h; eh
vÞ�h; rh

M ¼ khð�h; eh
vÞeh

v ð5Þ
where lh and kh are the secant shear and the secant bulk moduli of the microscopic phases, which are func-
tions of the deviatoric strain invariant �h ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�h : �h

q
; �hðxÞ ¼ ehðxÞ � 1

3
eh
vðxÞd, and the volumetric strain

eh
v ¼ tr eh.

2.2. Localization: macroscopic, microscopic and effective strain quantities

The next step in the employed micromechanics approach relates to an appropriate definition of micro-
scopic and macroscopic strain quantities, which allow the description of deformation of the composite and
its phases. We consider an r.e.v. subjected to the displacement boundary conditions of the Hashin-type:
on oV : nðxÞ ¼ E � x ð6Þ
where n is the microscopic displacement field; x denotes the position vector at the microscopic scale; and E

is the macroscopic strain in V, related to the microscopic strain e(x) by the volume averaging relation (see
e.g. Zaoui, 2002):
E ¼ heðxÞiV ¼ 1

V

Z
V

eðxÞdV ð7Þ
Boundary condition (6) ensures that both macroscopic strain E and microscopic strain e(x) are kinemati-
cally compatible. The premise of continuum micromechanics is that it is possible to separate the heteroge-
neous material into homogeneous phases associated with an on-average constant strain per phase. In linear
elastic homogenization problems, this is achieved by means of a localization (or concentration) tensor,
which concentrates the macroscopic strain E into each phase eh ¼ Ah : E, where the 4th-order concentration
tensor Ah is a function of elastic properties, and information relating to the morphology of the phases. By
contrast, in non-linear micromechanics, the strain measurements serve primarily to study the deformation
states close to failure. Therefore, we resort to �effective� strain quantities, that are constant per phase. For
isotropic materials, effective strain quantities are suitably developed as moments of the spatially varying
microscopic strains eh(x), induced by boundary condition (6) in each phase. The first moment delivers a
suitable means of expressing the �effective� volume strain per phase:
�eh ¼ trhehðxÞiV h
¼ A

v
hEv ð8Þ
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where A
v
h links the macroscopic volume strain Ev = trE to the effective volume strain �eh. The cohesive prop-

erties of composite materials refer to a material failure in shear that requires an appropriate introduction of
effective shear strain quantities, constructed as moments of the spatially varying deviator strain tensor �h(x).
The first moment of �h(x) reads:
��h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hðxÞiV h

: h�hðxÞiV h

q
¼ A

d
hEd ð9Þ
where Ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
d
: E

d

p
is the 2nd deviator invariant of the macroscopic strain tensor E ¼ E

d
þ 1
3
Evd; and A

d
h

links linearly the macroscopic applied strain Ed to the first moment effective deviator strain ��h. Note that the
linearity of the localization condition (9) is due to the fact that ��h is constructed from the volume averages
of the strain tensor �h(x). By contrast, if the effective strain definition were to involve a higher order poly-
nomial construction, i.e. higher moments of the strain tensor �h(x), the effective deviator strain can be
shown to be a function of not only Ed, but also of other invariants of the macroscopic strain tensor
E. For instance, the second moment of the deviator strain tensor obeys to the following form (Dormieux
et al., 2002):
���
2
h ¼ h�hðxÞ : �hðxÞiV h

¼ ðA
v

hÞ
2E2v þ ðA

d

hÞ
2E2d ð10Þ
For the record, definition (9) of the effective deviator strain is often referred to as �classical� secant method,
and definition (10) as �modified� secant method (Suquet, 1997); and the combination of (8) and (10) as
�mixed� secant method (Dormieux et al., 2002; Lemarchand et al., 2002). While further effective strain quan-
tities can be defined as higher moments of the non-homogeneous microscopic strain field, we will restrict
ourselves here to the two effective strain deviator invariants defined by (9) and (10) to study the effect of
the interfacial properties on the cohesion of highly filled composites under pure deviator loading, for which

Ev ¼ �eh ¼ 0. The two quantities which need to be determined are the localization factors A
d
h and A

d

h required
for the application of the classical and modified secant method. These concentration factors relate to the
specific microscopic geometry under consideration. Dormieux et al. (2002) derived general expressions
for these concentrations factors based on an energy argument (see application in Lemarchand et al.
(2002)). Alternatively, as shown below, they can be determined from the analytical solution of the boundary
value problem of the r.e.v. under consideration.

2.3. Homogenization

The third step of the non-linear homogenization approach relates to stresses, and the representation of
the ultimate stress state close to failure by means of constitutive equations. Classically, the macroscopic
stress R is the volume average of the microscopic stresses r(x):
R ¼ hrðxÞiV ¼ 1

V

Z
V

rðxÞdV ð11Þ
Following experimental results [ ], the strength domain of the composite may be expressed by a Drucker–
Prager type strength criteria (see Fig. 2):
in V : F ðRÞ ¼
ffiffiffi
1

2

r
S þ dhomRM � chom 6 0 ð12Þ
where chom is the macroscopic cohesion; dhom is the macroscopic friction coefficient. The macroscopic stress
invariants are linked to the strain invariants by a non-linear elastic representation of the material behavior:
S ¼ 2lhomðEv;EdÞEd ; RM ¼ khomðEv;EdÞEv ð13Þ
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where lhom and khom are the macroscopic secant moduli of the composite. Furthermore, the microscopic
stress invariants (5) can be rewritten as functions of the �effective� strain quantities previously defined.
sh ¼ 2lhð�effh ; eeffh Þ�effh ; rh
M ¼ khð�effh ; eeffh Þeeffh ð14Þ
where the effective deviatoric strain �effh and volumetric strain eeffh are defined respectively by either (9) or (10)
and (8); two remarks:

(1) Focus of our study is the cohesive strength of the composite, that is a pure deviatoric loading for which
Ev = 0. In addition, if we choose for the effective volumetric strain, the one given by the first moment
(8), it is eeffh � �eh ¼ 0 in pure deviatoric loading; and thus rh

M ¼ RM ¼ 0. This reduces the non-linear
elastic relations (14 ) and (13) to:
sh ¼ 2lhð�effh Þ�effh ; S ¼ 2lhomEd ð15Þ
Given this assumption, the results developed below hold for the cohesion of a Drucker–Prager mate-
rial, but also for the cohesion of a Von–Mises material.

(2) At failure, f (rm) = 0 and F(R) = 0, which corresponds to infinite values of the deviatoric strain invar-
iants (except for rigid phases), �effh ! 1 and Ed!1. Thus, for this limit case in pure deviatoric load-
ing, a combination of the strength criteria (4) and (12) and the non-zero non-linear elastic constitutive
relations (15) yields:
f ðrhÞ ¼ 0() lim
�eff
h
!1

sh ¼
ffiffiffi
2

p
ch ) ch ¼

ffiffiffi
2

p
lim

�eff
h
!1

½lhð�effh Þ�effh 
 2
0;þ1½ ð16Þ

F ðRÞ ¼ 0() lim
Ed!1

S ¼
ffiffiffi
2

p
chom ) chom ¼

ffiffiffi
2

p
lim

Ed!1
½lhomEd 
 2
0;þ1½ ð17Þ
With (16) and (17) we arrived at reducing a strength problem of h = 1, n-phases and a composite to a prob-
lem per phase that involves only the ratios of the microscopic-to-macroscopic shear secant moduli and devi-
atoric strain invariants per phase:
chom
ch

¼ lim
Ed!1
�eff
h
!1

lhom
lhð�effh Þ �

Ed

�effh


 �
ð18Þ
The shear moduli ratio lhom/lh can be addressed by means of a suitable linear homogenization scheme for
the considered geometry; and the shear strain ratio Ed=�

eff
h between the microscopic and macroscopic

invariants through application of the effective strain quantities defined by relations (9) and (10). For a pure
deviatoric loading, (18) reduces to:
chom
ch

¼ lim
�eff
h
!1

lhom
lhð�effh Þ �

1

Ad;eff
h

 !
ð19Þ
where Ad;eff
h is the concentration factor of the employed secant method (i.e. A

d
h or A

d

h). The limit (19) defines a
set of n equations which are functions of the volume fractions and local elastic material properties. In addi-
tion, it defines n � 1 compatibility conditions between the strength properties of the phases, say # and h:
c#
ch

¼ g � lim
�eff
#
!1

�eff
h
!1

Ad;eff
#

Ad;eff
h

 !
ð20Þ
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where g = l#/lh is the shear moduli ratio between the two phases. Last, for the solution of the limit prob-
lem (19) and (20), note that an infinite shear strain �effh ! 1, in terms of a secant modulus, is equivalent to
lh!0. Thus, at failure, l#!0 and lh!0. But the ratio g = l#/lh is assumed to remain fixed, and actually
substitutes for the cohesion ratio c#/ch according to (20). Thus, a combination of (19) and (20) closes the
non-linear homogenization approach of strength properties, relating the composite cohesion to the micro-
scopic cohesion of the involved phases.

2.4. Application of Hervé–Zaoui�s BVP-Solution

Relations (19) and (20) are general expressions for the homogenization of cohesive properties of
isotropic composite materials. Application to a particular geometry requires choice of an appropriate linear
upscaling scheme. The linear elastic solution for an n-layered inclusion model is due to Hervé and Zaoui
(1993), which we employ for the 3-layered composite material system displayed in Fig. 3. Given the restric-
tion to a purely deviatoric loading, we consider the Hervé–Zaoui solution for an r.e.v. subjected at infinity
to a uniform deviatoric loading:
on oV : nðxÞ ¼ Ed � x ð21Þ
The solution of the boundary value problem for the 3-layered inclusion model, detailed in Table 2, gives the
spatially varying deviator strain tensor �h(x) as linear function of the macroscopic deviator strain Ed. Use of
the Hervé–Zaoui strain solution �h(x) in (9) and (10) gives explicit expressions for the localization factors A

d
h

and A
d

h , which are functions of the interface-matrix shear modulus ratio gi = li/lm and gI = lI/lm; the
shear-to-bulk modulus ratio of matrix and interface, qh = lh/kh, and of the volume fractions fh:
A
d
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hðxÞiV h

: h�hðxÞiV h

Ed : Ed

s
¼ A

d
hðgI ; gi; qh; fhÞ ð22Þ

A
d

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hðxÞ : �hðxÞiV h

Ed : Ed

s
¼ A

d

hðgI ; gi; qh; fhÞ ð23Þ
The concentration factors A
d
h and A

d

h , which are given in Appendix A, are the sole quantities required to
solve the limit problem (19). More precisely, following �classical� linear homogenization theories, the com-
posite shear modulus lhom for the 3-phase composite model with rigid inclusions (��I ¼ 0() A

d
I ¼ 0) is

given by (see detailed derivation in Appendix B):
lhom
lm

¼ lim
gI!1

ðgI þ ð1� gIÞfmA
d
m þ ðgi � gIÞfiA

d
i Þ ð24Þ
Use of (24) in (19) yields a first homogenization expression for the macroscopic cohesion:
chom
cm

¼ lim
gI!1
qm!0

qi!0

gI þ ð1� gIÞfmA
d
m þ ðgi � gIÞfiA

d
i

Ad;eff
m

 !
¼ Fðgi; fhÞ ð25Þ
Evaluated for the limit case �effm ! 1 and �effi ! 1, which is equivalent to qm = lm/km!0 and qi = li/
ki!0, expression (25) depends only on the interface-to-shear modulus ratio gi = li/lm and the volume
fractions fh. The final step in the homogenization approach then consists of replacing the interface-to
matrix shear modulus ratio gi = li/lm in (25) by the interface-to-matrix cohesion ratio vi = ci/cm; that is
from (24):



Table 2
Hervé–Zaoui�s solution for deviatoric displacement loading at infinity (Hervé and Zaoui, 1993)

Hervé–Zaoui solution for deviatoric displacement at infinity

The components of the displacement field in the r.e.v. read in spherical coordinates
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U ðhÞ
w

U ðhÞ
/

0
BB@

1
CCA ¼

r � 6mh
1�2mh

r3 3
r4

5�4mh
1�2mh

1
r2

r � 7�4mh
1�2mh

r3 � 2
r4

2
r2

�r 7�4mh
1�2mh

r3 2
r4 � 2

r4

2
664

3
775

ah

bh

ch

dh

0
BBB@

1
CCCA

The constants ah, bh, ch and dh are determined through four independent displacement and
stress continuity conditions between the phases. These conditions are written in the compact
form: Lh(Rh) ÆWh = Lh+1 (Rh+1) ÆWh+1

where Wh ¼ ah bh ch dh½ 
T, and Lh(r) is given by:

LhðrÞ ¼

r � 6mh
1�2mh

r3 3
r4

5�4mh
1�2mh

1
r2

r � 7�4mh
1�2mh

r3 � 2
r4

2
r2

lh
3mh
1�2mh

lhr
2 � 12

r5 lh
2ðmh�5Þ
1�2mh

lh
r3

lh � 7þ2mh
1�2mh

lhr
2 8

r5 lh 2 1þmh
1�2mh

lh
r3

2
666664

3
777775

The previous relations allow the successive determination of the constants in layer h + 1
from the one determined before in layer h:

Whþ1 ¼ MðhÞ �Wh; MðhÞ ¼ L�1
hþ1ðRhÞ � LhðRhÞ

This gives the possibility to express all unknown coefficients with respect to phase 1:

Whþ1 ¼ PðhÞ �W1; PðhÞ ¼
Yh

j¼1
MðjÞðRjÞ

Carrying out this operation for the three layered inclusion delivers the following explicit
solution for the sought constants:

Wh ¼

ah

bh

ch

dh

0
BBB@

1
CCCA ¼ Edffiffiffi

2
p

P ð3Þ
22 P

ð3Þ
11 � P ð3Þ

12 P
ð3Þ
21

� �Pðh�1Þ �

P ð3Þ
22

�P ð3Þ
21

0

0

0
BBB@

1
CCCA

Given the linearity of Wh with respect to Ed, it is convenient to work with the normalized
constants Wh ¼ Wh=Ed ¼ �ah

�bh �ch
�dh

� �T
With the solution for n(h), the microscopic strains follow:

�hðxÞ ¼ 1
2
ðrnðhÞ þ trnðhÞÞ

The localization factors are obtained with (22) and (23) and are given in Appendix A
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veffi ¼ ci
cm

¼ gi � lim
qm!0
qi!0

Ad;eff
i

Ad;eff
m

 !
ð26Þ
This variable change gi ! veffi is secant method specific. For the classical secant method, for which
h��hiV ¼ Ed () hAd

hiV ¼ 1, Eq. (26) can be evaluated from:
veffi � �vi ¼ gi � lim
qm!0
qi!0

1� fmA
d
m

fiA
d
m

 !
ð27Þ
On the other hand, for the modified secant method, for which h���hiV 6¼ Ed , the concentration factors for the

interface Ad;eff
i � A

d

i and for the matrix A
d;eff
m � A

d

m need to be evaluated from (23) [see Appendix A]. Use of
this variable change in (26) then delivers a second definition of the composite cohesion as function of the
cohesion ratio veffi � ��vi, which substitutes for gi into the homogenization solution (25):
chom
cm

¼ Fðgi ! veffi ; fhÞ ¼ Gðveffi ; fhÞ ð28Þ
Expression (28) does not permit an analytical expression. But using the step-by-step calculation procedure
described here above, the problem is straightforwardly solved with any symbolic mathematical software.
3. Discussion

3.1. Parameter study: the effect of the interface cohesion on the composite cohesion

For a fixed inclusion volume fraction of fI = 0.5, Figs. 4–6 display the results obtained with the strength
homogenization model for three interface volume fractions fi = 0.15;0.30;0.45. For both the classical and
the modified secant methods, the figures illustrate the successive results of the homogenization procedure:

• The ‘‘a’’-figures display the cohesive ratio as a function of the shear-modulus ratio g 2 [0,1], where for
convenience we dropped the subscript ‘‘i’’. It is interesting to note that the classical and modified secant
method do not deliver the same solution, and diverge even for high interface volume fractions (see Fig.
6a). This is readily understood from the fact that when the interface volume fraction tends toward 0.5,
the matrix vanishes, for fI = 0.5, and the representation as a three phase model becomes obsolete.

• The ‘‘b’’-figures display the relation between g and v. It is interesting to note here, that for low values of
g 6 0.2, both secant methods deliver almost identical values. Note also that the interface-to-matrix cohe-
sion range of interest is v 2 [0, 1], which corresponds to g-values roughly smaller than 0.5. Higher values
for v are theoretically possible, but practically difficult to achieve, requiring specific surface treatment of
the inclusions, to achieve a higher interface cohesion than the matrix.

• Finally, the ‘‘c’’-figures display the actual result of the homogenization procedure, that is chom/cm as a
function of the interface-to-matrix cohesion ratio v 2 [0, 1], obtained by the variable change g!v. In
all the considered cases, it appears that the macroscopic cohesion ratio is a non-linear increasing func-
tion of the interface-to-matrix cohesion ratio. The classical secant method generally predicts a higher
composite cohesion than the modified secant method. But what is interesting to note is that there exists
a critical value of the interface-to-matrix cohesion ratio v, below which the composite cohesion is smaller
than the one of the matrix, i.e. chom/cm < 1; and above this value it is the inverse. Fig. 7 displays this
critical interface-to-matrix cohesion ratio, vcrit () chom=cm ¼ 1, as a function of the interface volume



Fig. 4. Strength homogenization procedure for fi = 0.15 and fI = 0.5: (a) chom/cm vs. g; (b) v vs. g; (c) chom/cm vs. v = ci/cm.
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fraction fi for an inclusion volume fraction of fI = 0.5. As expected, a higher interface volume fraction
requires compensation by a higher vcrit-value to deliver the same performance chom/cm = 1. Interestingly,
the modified secant method delivers, for moderate interface volume fractions, an almost linear vcrit-fi
relation, with values that are much greater than the one predicted by the classical secant method. This
highlights that the modified secant method is more sensitive to the interface properties than the classical
secant method.



Fig. 5. Strength homogenization procedure for fi = 0.30 and fI = 0.5: (a) chom/cm vs. g; (b) v vs. g; (c) chom/cm vs. v = ci/cm.
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3.2. Inverse analysis: chemical softening of interface cohesion

It is interesting to perform an inverse analysis of the interface cohesion properties for the experimental
values of non-degraded and degraded cement paste materials given in Table 1. The input parameter to the
inverse application of the model are:

(1) The volume fractions of the inclusion and the interface. The first is known, fI = 0.5, the second can be
determined from (3). In the mortar, the aggregate size is assumed to be uniform of roughly
R1 = 0.2mm. Furthermore, the SEM micrograph (Fig. 1) of the chemically degraded material shows



Fig. 6. Strength homogenization procedure for fi = 0.45 and fI = 0.5: (a) chom/cm vs. g; (b) v vs. g; (c) chom/cm vs. v = ci/cm.
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that the ITZ size is limited approximately to Di ’ 20lm, which is on the same order of typical ITZ sizes
of 10–40lm, reported for cementitious materials in the open literature (see for example Maso, 1996;
Monteiro and Ostertag, 1989). Thus, for the mortar under consideration, fi ’ 0.3.

(2) The experimental mortar-to-cement paste cohesion ratio is chom/cm = 1.76 for the non-degraded mate-
rial, and chom/cm = 1.05 for the chemically softened material.

Using these values in Fig. 5c (fi = 0.3; fI = 0.5) provides a means of estimating the interface-to-matrix
cohesion ratio v = ci/cm. For the non-degraded material, we obtain:



Fig. 7. Critical interface-to-matrix cohesion ratio vcrit () chom=cm ¼ 1 vs. interface volume fraction (fI = 0.5).
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chom
cm

 !0
¼ 1:76) v0 2 ½0:32; 0:57
 ð29Þ
where the lower value corresponds to the classical secant method and the upper value to the modified secant
method. Analogously, for the degraded material:
chom
cm

 !1

¼ 1:05) v1 2 ½0:11; 0:26
 ð30Þ
The values for the non-degraded material (29) are on the same order of reported microhardness measure-
ments of the ITZ (Mehta and Monteiro, 1988; Yuji, 1988). But, in addition, the model provides a means of
estimating the effect of chemical leaching on the interface cohesion, for which both methods converge to a
residual interface cohesion of approximately 15% of the initial cohesion:
c1i
c0i

¼ v1

v0
� c1m

c0m
2 ½0:13; 0:17
 ð31Þ
This chemical softening of the interface is much larger than the bulk matrix softening of c1m =c
0
m ¼ 0:38, and

highlights the particular effect of chemical softening on the interface cohesion. It signifies that beyond the
overall strength loss due to calcium leaching, a particularly weak interface exists in chemically softened
cement-based material that dominates the cohesion of the composite material. The microstructural appear-
ance as shown in the SEM graph (Fig. 1) underlines this finding with the large pores and high porosity.

3.3. Limit case of porous matrix

By means of a similar inverse analysis, the model provides a way to distinguish the intrinsic chemical
softening of the solid phase of the matrix from the chemical softening induced by an increase of the porosity
of the cement paste. To this end, we inspect the cohesion homogenization model for the limit of empty
inclusions, for which ci = 0, or gi = vi = 0. In this case, the only mechanically active phase is the matrix
of volume fraction fm = 1 � /, where / is the porosity. For this two phase composite, (25) reduces to:
chom
cm

¼ fm lim
qm!0

A
d
m

Ad;eff
m

 !
ð32Þ
The classical secant method (Ad;eff
m ¼ A

d
m) delivers a linear relation between the cohesion ratio chom/cm

and the solid volume fraction fm. By contrast, the modified secant method delivers a non-linear relation
between the cohesion ratio and the matrix volume fraction:



Fig. 8. Limit Case of empty inclusions: chom/cm vs. fm (= solid volume fraction).
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vi ¼ 0 :
chom
cm

¼ fm lim
qm!0

A
d
m

A
d

m

0
@

1
A ¼ HðfmÞ ð33Þ
FunctionHðfmÞ is displayed in Fig. 8. For the inverse application, we note that 1 � fm corresponds to the
porosity, chom = cm is the cement paste cohesion, and ch = cs is the unknown cohesion of the matrix solid
phase (C-S-H, Portlandite, etc.). For the classical secant method, using the values of Table 1, we obtain:
c1s
c0s

¼ c1m
c0m

 !
� f 0m
f1
m

¼ 0:46 ð34Þ
Analogously, for the modified secant method:
c1s
c0s

¼ c1m
c0m

 !
� Hðf 0mÞ
Hðf1

m Þ ¼ 0:48 ð35Þ
where Hðf 0mÞ ¼ 0:97 and Hðf1
m Þ ¼ 0:76 are the values taken by function HðfmÞ displayed in Fig. 8 for

respectively the initial porosity 1� f 0m ¼ 0:03 and the asymptotic porosity 1� f1
m ¼ 0:21 of the cement

paste. It therefore appears, from the inverse application of the non-linear homogenization model, that cal-
cium leaching leads to an intrinsic softening of the solid cohesion of the matrix of more than 50%. This
highlights that calcium leaching does not only affect the strength properties by an increase of the porosity,
but as well by an intrinsic softening of the solid material composing the matrix.
3.4. Extension to account for aggregate grading

In the case of the tested mortar, the grading of the aggregates is very narrow and a simplified calculation
suffices to obtain the ITZ volume fraction. For commonly used concretes the calculation of the ITZ volume
fraction has to be improved. In general, the grading of the aggregates is known and can be described as a
function r = r(m) obtained in standard sieve curves. In this function r is the radius of the aggregate and m

the mass percentage of aggregates that has a smaller radius than r. With such a grading curve at hand, the
volume fraction of the ITZ, fi, assuming that the ITZ has a constant size, D, and the aggregates have a uni-
form density, can be estimated according to:
fi
fI

¼
Z 1

0

V ITZ
V i
dm ¼

Z 1

0

1þ D
rðmÞ

 !3
� 1

" #
dm ð36Þ
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where fI is the total volume fraction of the aggregates. This provides a means of employing the model to
concrete and mortar with different aggregate volume fractions and size distributions.
4. Conclusions

The non-linear homogenization procedure developed in this paper provides a quantitative means of
studying the role of interface properties on the macroscopic cohesion of highly filled composite materials:

(1) The two key elements for upscaling strength properties are (1) the separation of the heterogeneous
material system in phases of constant strength properties, and (2) the definition of appropriate effective
strain quantities that capture the morphological features of the microstructure. For the considered
three phase inclusion geometry, a higher order moment definition of the effective strain (i.e. modified
secant method) is more sensitive to the interface properties than a first order moment definition (i.e.
classical secant method). This leads, in general, to lower composite strength values.

(2) There exists a critical interface-to-matrix cohesion ratio vcrit = ci/cm below which the presence of an
interface weakens the composite cohesion compared to the matrix cohesion. This ratio vcrit depends
only on the interface and inclusion volume ratio; it appears therefore to be rather related to the micro-
geometry of the composite, than to strength properties. Sound composite materials have typical inter-
face-to-matrix cohesion ratio that are much higher than this critical value. In turn, chemically softened
materials come very close to this critical value, chom/cm!1. This critical interface-to-matrix cohesion
ratio vcrit may serve as a design parameter for an efficient design of such composite materials.

(3) The inverse application of the model provides conclusive evidence that chemical degradation of
cement-based materials does affect the mechanical performance of the composite not only through a
change of volume proportions (i.e. increase of porosity), but as well through a chemical softening of
the solid�s cohesion. This important result needs still to be confirmed by advanced micro-to-nano
mechanical testing (e.g. nanoindentation; see Constantinides and Ulm, 2002). For mortar, it turns
out that the interface strength properties are far more affected than the cement paste matrix. This is
consistent with the fact that the ITZ has in general a higher porosity, and thus is more exposed to chem-
ical attack than the matrix.
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Appendix A. Concentration factors

The concentration factors of the Hervé–Zaoui scheme are determined by using the microscopic strain
solution in (9) and (10). This delivers the following explicit expressions:
A
d
h ¼ ��h

Ed
¼

ffiffiffi
2

p
�ah �

21�bh

5ð1� 2mhÞ
� R5h � R5h�1
R3h � R3h�1

 !
ðA:1Þ
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ðA
d

hÞ
2 ¼ ð���h=EdÞ2 ¼

1

ð1� 2mhÞ2
3�b
2

hð8m2h þ 35Þ
R7h � R7h�1
R3h � R3h�1

þ 42�ah
�bhð2mh � 1Þ

R5h � R5h�1
R3h � R3h�1

þ 5�a2hð1� 2mhÞ2



þ 24�bh
�dhmhð5� 7mhÞ

R2h � R2h�1
R3h � R3h�1

þ 8�d2hð7m2h � 10mh þ 10Þ
1

R3hR
3
h�1

þ144�ch
�dhð1� 2mhÞ

R5h � R5h�1
R5hR

5
h�1ðR3h � R3h�1Þ

þ 120�c2hð1� 2mhÞ2
R7h � R7h�1

R7hR
7
h�1ðR3h � R3h�1Þ

�
ðA:2Þ
where mh denotes the Poisson ratio of phase h; and �ah ¼ ah=Ed , �bh ¼ bh=Ed , �ch ¼ ch=Ed , and �dh ¼ dh=Ed are
the normalized constants of the Hervé–Zaoui displacement solution (see Table 2).
Appendix B. Composite shear modulus

This appendix shows the derivation of expression (24) of the composite shear modulus which can be
extracted from the general Hervé–Zaoui solution.
Following �classical� linear homogenization theory, the composite shear modulus is determined from

the application of the stress volume average condition (11) together with a linear elastic constitutive law
for the 3-phase composite inclusion model:
S ¼ hsiV ¼ h2lh�
hðxÞiV ¼ 2lmfm��m þ 2lifi��i þ 2lI fI��I ¼ 2lhomE

d ðB:1Þ
where ��
h
¼ h�hðxÞiV h

denote the volume average of the deviator strain tensor in the phases, which are related
by the strain compatibility condition:
fm��m þ fi��i þ fI��I ¼ Ed ðB:2Þ
For the specific n-layered inclusion geometry Hervé and Zaoui (1993) showed that ��
h
¼ A

d
hE

d , which leads
to the following expression of the composite shear modulus:
lhom ¼ lmfmA
d
m þ lifiA

d
i þ lI fIA

d
I ðB:3Þ
This is the general linear elastic expression for a composite composed of three deformable inclusions, for
which A

d
h is given by (A.1). For rigid inclusions, for which lI!1 and ��

I
! 0, (B.3) needs to be evaluated

for an infinite inclusion shear modulus:
lhom
lm

$$$$
gI!1

¼ lim
gI!1

ðfmA
d
mð1� gIÞ þ ðgi � gIÞfiA

d
i Þ ðB:4Þ
where gi = li/lm and gI = lI/lm. For a two phase material composed of matrix and empty inclusions, gI = 0
and fIA

d
I ¼ 1� fmA

d
m

lhom
lm

$$$$
gI¼0

¼ fmA
d
m ðB:5Þ
Finally, for a two phase composite composed of matrix and rigid inclusions, gI!1 and fIA
d
I ¼ 1� fmA

d
m:
lhom
lm

$$$$
gI!1

¼ lim
gI!1

ðgI þ ð1� gIÞfmA
d
mÞ ðB:6Þ
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